(3x^2-4x+6)-(-2x^2+4)+(-5x-3)=1

Simple and best practice solution for (3x^2-4x+6)-(-2x^2+4)+(-5x-3)=1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x^2-4x+6)-(-2x^2+4)+(-5x-3)=1 equation:



(3x^2-4x+6)-(-2x^2+4)+(-5x-3)=1
We move all terms to the left:
(3x^2-4x+6)-(-2x^2+4)+(-5x-3)-(1)=0
We get rid of parentheses
2x^2+3x^2-4x-5x-4+6-3-1=0
We add all the numbers together, and all the variables
5x^2-9x-2=0
a = 5; b = -9; c = -2;
Δ = b2-4ac
Δ = -92-4·5·(-2)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{121}=11$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-11}{2*5}=\frac{-2}{10} =-1/5 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+11}{2*5}=\frac{20}{10} =2 $

See similar equations:

| 4(x+3)-3(x+2)=-2 | | 18.9x=463.05 | | 43(7-2x)+34=50(x-4.1)+7.44 | | 25=14+t | | 24+v=50 | | 3(x+25)-2(-x+25)=5 | | 5(y-65)=80 | | -18=2p+6-8p | | 2x-12+3x-11=17 | | 10=q+23/4 | | 10.2x=91.8 | | 3=¼(m-4)+¼m | | 6=t+20/8 | | 3x^2-10x+5=0  | | 0,5x^2+x^2=100 | | 2x+3x+10=-15 | | 10j+14=84 | | 4x+12+2x=60 | | 4(x+3=-(x-17) | | 10k-25=35 | | 2x+5+x+5=43 | | 12/14-(4/7x+5/7)=1/2(-9/2x+1/6) | | 3(x+7)=4x+14 | | 5=s-71/3 | | 4(4x-11)=5(x+33) | | 8(y-81)=80 | | 18.8x=357.2 | | 3x=9x-11 | | 59+(x+10)=90 | | x/0.5=60 | | 4g-21=67 | | 59+(x+10)=180 |

Equations solver categories